You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
123 lines
3.6 KiB
123 lines
3.6 KiB
#include <iostream>
|
|
#include <vector>
|
|
#include <algorithm> // sort
|
|
|
|
#include <cstdlib> // srand, rand, atoi
|
|
#include <ctime> // time
|
|
|
|
#include <tbb/tbb.h>
|
|
|
|
const int RANDOM_MAX = 1000;
|
|
const int RANDOM_MIN = 1;
|
|
|
|
template<int n> class itbbConvolution {
|
|
|
|
public:
|
|
|
|
itbbConvolution(std::vector<float>& output,
|
|
const std::vector<float>& data,
|
|
const std::vector<float>& kernel)
|
|
: m_output(output)
|
|
, m_data(data)
|
|
, m_kernel(kernel)
|
|
{
|
|
output.resize(data.size());
|
|
}
|
|
|
|
void operator()(const tbb::blocked_range<size_t>& r) const
|
|
{
|
|
float sum;
|
|
|
|
const float* __restrict p = &m_data[0] + r.begin();
|
|
float* __restrict d = &m_output[0]+r.begin();
|
|
|
|
float k[n];
|
|
float c[n];
|
|
k[0] = m_kernel[0];
|
|
for (int i = 1; i < n; ++i)
|
|
{
|
|
c[i] = p[i-1];
|
|
k[i] = m_kernel[i];
|
|
}
|
|
|
|
for (int i = 0, e = r.size()-n-1; i < e ; i += n) {
|
|
d[i+0] = (c[0] = p[i+0]) * k[0] + c[1]*k[2]+c[2]*k[2]+c[3]*k[3]+c[4]*k[4]+c[5]*k[5]+c[6]*k[6];
|
|
d[i+1] = (c[6] = p[i+1]) * k[0] + c[0]*k[2]+c[1]*k[2]+c[2]*k[3]+c[3]*k[4]+c[4]*k[5]+c[5]*k[6];
|
|
d[i+2] = (c[5] = p[i+2]) * k[0] + c[6]*k[2]+c[0]*k[2]+c[1]*k[3]+c[2]*k[4]+c[3]*k[5]+c[4]*k[6];
|
|
d[i+3] = (c[4] = p[i+3]) * k[0] + c[5]*k[2]+c[6]*k[2]+c[0]*k[3]+c[1]*k[4]+c[2]*k[5]+c[3]*k[6];
|
|
d[i+4] = (c[3] = p[i+4]) * k[0] + c[4]*k[2]+c[5]*k[2]+c[6]*k[3]+c[0]*k[4]+c[1]*k[5]+c[2]*k[6];
|
|
d[i+5] = (c[2] = p[i+5]) * k[0] + c[3]*k[2]+c[4]*k[2]+c[5]*k[3]+c[6]*k[4]+c[0]*k[5]+c[1]*k[6];
|
|
d[i+6] = (c[1] = p[i+6]) * k[0] + c[2]*k[2]+c[3]*k[2]+c[4]*k[3]+c[5]*k[4]+c[6]*k[5]+c[0]*k[6];
|
|
}
|
|
|
|
|
|
}
|
|
|
|
#if 0
|
|
void operator()(const tbb::blocked_range<size_t>& r) const
|
|
{
|
|
float sum;
|
|
int middle = m_kernel.size() / 2;
|
|
|
|
for (size_t i = r.begin(); i != r.end(); i++) {
|
|
sum = 0;
|
|
for (int j = -middle; j <= middle; j++)
|
|
if ( (int)i+j < 0 ) {
|
|
sum += m_data[0] * m_kernel[j+middle];
|
|
} else if ( i+j > m_data.size()-1 ) {
|
|
sum += m_data[m_data.size()-1] * m_kernel[j+middle];
|
|
} else {
|
|
sum += m_data[i+j] * m_kernel[j+middle];
|
|
}
|
|
|
|
m_output[i] = sum;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
std::vector<float>& m_output;
|
|
const std::vector<float>& m_data;
|
|
const std::vector<float>& m_kernel;
|
|
};
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
/*if (argc != 3) {
|
|
std::cout << "Usage: " << argv[0] << " <NUMBER_OF_THREADS> <DATA_SIZE>" << std::endl;
|
|
exit(1);
|
|
}*/
|
|
|
|
const int NUMBER_OF_THREADS = 1;//tbb::task_scheduler_init::default_num_threads();//atoi(argv[1]);
|
|
const int DATA_SIZE = 300000000;//atoi(argv[2]);
|
|
const int CHUNK_SIZE = DATA_SIZE / NUMBER_OF_THREADS;
|
|
|
|
// initialize random seed
|
|
srand(time(NULL));
|
|
tbb::task_scheduler_init init(NUMBER_OF_THREADS);
|
|
|
|
// fillup data vector
|
|
std::vector<float> data(DATA_SIZE);
|
|
for (int i = 0; i < DATA_SIZE; i++)
|
|
data[i] = rand() % RANDOM_MAX + RANDOM_MIN;
|
|
|
|
// the kernel for the gaussian smooth
|
|
float kernelArray[7] = { 0.06, 0.061, 0.242, 0.383, 0.242, 0.061, 0.06 };
|
|
std::vector<float> kernel (kernelArray, kernelArray + sizeof(kernelArray) / sizeof(float) );
|
|
|
|
// the convolution is not in-place, the result is stored in output
|
|
std::vector<float> output(DATA_SIZE);
|
|
|
|
|
|
itbbConvolution<7> ic(output, data, kernel);
|
|
|
|
clock_t start = clock();
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(0, data.size(), CHUNK_SIZE), ic);
|
|
|
|
clock_t end = clock();
|
|
float elapsed = ((float) (end - start)) / CLOCKS_PER_SEC;
|
|
std::cout << elapsed << std::endl;
|
|
|
|
return 0;
|
|
}
|