You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
2.6 KiB
107 lines
2.6 KiB
#include <iostream> // cout
|
|
#include <vector>
|
|
|
|
#include <cstdlib> // srand, rand, atoi
|
|
#include <ctime> // timespec, clock_gettime
|
|
|
|
|
|
const int RANDOM_MAX = 1000;
|
|
const int RANDOM_MIN = 1;
|
|
|
|
|
|
timespec diff(timespec start, timespec end)
|
|
{
|
|
timespec temp;
|
|
if ((end.tv_nsec-start.tv_nsec)<0) {
|
|
temp.tv_sec = end.tv_sec-start.tv_sec-1;
|
|
temp.tv_nsec = 1000000000+end.tv_nsec-start.tv_nsec;
|
|
} else {
|
|
temp.tv_sec = end.tv_sec-start.tv_sec;
|
|
temp.tv_nsec = end.tv_nsec-start.tv_nsec;
|
|
}
|
|
return temp;
|
|
}
|
|
|
|
|
|
/// @todo rewrite it
|
|
void serialConvolution(std::vector<float>& output,
|
|
const std::vector<float>& input,
|
|
const std::vector<float>& kernel)
|
|
{
|
|
float sum;
|
|
int middle = kernel.size() / 2;
|
|
|
|
// before
|
|
for (size_t i = 0; i < middle; i++) {
|
|
sum = 0;
|
|
for (int j = -middle; j <= middle; j++)
|
|
if ( (int)i+j < 0 ) {
|
|
sum += input[0] * kernel[j+middle];
|
|
} else {
|
|
sum += input[i+j] * kernel[j+middle];
|
|
}
|
|
|
|
output[i] = sum;
|
|
}
|
|
|
|
for (size_t i = middle; i < input.size()-middle; i++) {
|
|
sum = 0;
|
|
for (int j = -middle; j <= middle; j++)
|
|
sum += input[i+j] * kernel[j+middle];
|
|
|
|
output[i] = sum;
|
|
}
|
|
|
|
// after
|
|
for (size_t i = input.size()-middle; i < input.size(); i++) {
|
|
sum = 0;
|
|
for (int j = -middle; j <= middle; j++)
|
|
if ( i+j > input.size()-1 ) {
|
|
sum += input[input.size()-1] * kernel[j+middle];
|
|
} else {
|
|
sum += input[i+j] * kernel[j+middle];
|
|
}
|
|
|
|
output[i] = sum;
|
|
}
|
|
}
|
|
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
if (argc != 3) {
|
|
std::cout << "Usage: " << argv[0] << " <NUMBER_OF_THREADS> <DATA_SIZE>" << std::endl;
|
|
exit(1);
|
|
}
|
|
|
|
const int NUMBER_OF_THREADS = atoi(argv[1]);
|
|
const int DATA_SIZE = atoi(argv[2]);
|
|
const int CHUNK_SIZE = DATA_SIZE / NUMBER_OF_THREADS;
|
|
|
|
srand(time(NULL));
|
|
|
|
std::vector<float> data(DATA_SIZE);
|
|
for (int i = 0; i < DATA_SIZE; i++)
|
|
data[i] = rand() % RANDOM_MAX + RANDOM_MIN;
|
|
|
|
|
|
// the kernel for the gaussian smooth
|
|
float kernelArray[7] = { 0.06, 0.061, 0.242, 0.383, 0.242, 0.061, 0.06 };
|
|
std::vector<float> kernel (kernelArray, kernelArray + sizeof(kernelArray) / sizeof(float) );
|
|
|
|
// the convolution is not in-place, the result is stored in output
|
|
std::vector<float> output(DATA_SIZE);
|
|
|
|
timespec startTime;
|
|
clock_gettime(CLOCK_MONOTONIC, &startTime);
|
|
|
|
serialConvolution(output, data, kernel);
|
|
|
|
timespec endTime;
|
|
clock_gettime(CLOCK_MONOTONIC, &endTime);
|
|
timespec timeDiff = diff(startTime, endTime);
|
|
std::cout << timeDiff.tv_sec << "." << timeDiff.tv_nsec << std::endl;
|
|
|
|
return 0;
|
|
}
|