You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

389 lines
8.8 KiB

#ifndef GRAPH_H
#define GRAPH_H
#include <vector>
#include <algorithm>
// directed, weighted
template <typename T>
class Graph {
private:
struct Edge {
Edge(const T& destination, float weight = 0);
Edge(const Edge& other);
Edge& operator=(const Edge& other);
const T* m_destination;
float m_weight;
};
struct Vertex {
Vertex(const T& data);
Vertex(const Vertex& other);
Vertex& operator=(const Vertex& other);
void addEdge(const T& destination, float weight = 0);
void removeEdge(const T& destination, float weight = 0);
void removeAllEdgesTo(const T& destination);
const T* m_data;
std::vector<Edge> m_edges;
};
public:
Graph();
// Capacity
bool empty() const;
size_t numberOfVertices() const;
size_t numberOfEdges() const;
// Modifiers
bool addVertex(const T& data);
bool removeVertex(const T& data);
bool addEdge(const T& source, const T& destination, float weight = 0);
bool removeEdge(const T& source, const T& destination, float weight = 0);
bool removeAllEdges(const T& source, const T& destination);
// Lookup
bool contains(const T& data) const;
std::vector<T> vertices() const;
std::vector<T> neighboursOf(const T& data) const;
std::vector<int> edgesBetween(const T& source, const T& destination) const;
std::string serialize() const;
private:
typename std::vector<Vertex >::const_iterator find(const T& data) const;
typename std::vector<Vertex >::iterator find(const T& data);
std::vector<Vertex> m_vertices;
};
// non-member functions
// template <typename T> typename std::vector<T> subtee_breathFirst(const Graph<T>& graph, const T& root);
// template <typename T> bool connected(const Graph<T>& graph);
// template <typename T> bool circular(const Graph<T>& graph);
// template <typename T> typename std::vector<T> path(const Graph<T>& graph, const T& a, const T& b);
// definitions
// Edge
template <typename T>
Graph<T>::Edge::Edge(const T& destination, float weight)
: m_destination(&destination)
, m_weight(weight)
{
}
template <typename T>
Graph<T>::Edge::Edge(const Edge& other)
: m_destination(other.m_destination)
, m_weight(other.m_weight)
{
}
template <typename T>
typename Graph<T>::Edge& Graph<T>::Edge::operator=(const Edge& other)
{
if (this != &other) {
m_destination = other.m_destination;
m_weight = other.m_weight;
}
return *this;
}
// Vertex
template <typename T>
Graph<T>::Vertex::Vertex(const T& data)
: m_data(&data)
, m_edges()
{
}
template <typename T>
Graph<T>::Vertex::Vertex(const Vertex& other)
: m_data(other.m_data)
, m_edges(other.m_edges)
{
}
template <typename T>
typename Graph<T>::Vertex& Graph<T>::Vertex::operator=(const Vertex& other)
{
if (this != &other) {
m_data = other.m_data;
m_edges.clear();
m_edges = other.m_edges;
}
return *this;
}
template <typename T>
void Graph<T>::Vertex::addEdge(const T& destination, float weight)
{
Edge e(destination, weight);
m_edges.push_back(e);
}
template <typename T>
void Graph<T>::Vertex::removeEdge(const T& destination, float weight)
{
m_edges.erase(std::find_if(m_edges.begin(), m_edges.end(),
[&destination, &weight](const Edge& e)
{ return e.m_destination == destination &&
e.m_weight == weight;}));
}
template <typename T>
void Graph<T>::Vertex::removeAllEdgesTo(const T& destination)
{
std::remove_if(m_edges.begin(), m_edges.end(),
[&destination](const Edge& e)
{ return e.m_destination == destination; });
}
// Graph
template <typename T>
Graph<T>::Graph()
: m_vertices()
{
}
template <typename T>
bool Graph<T>::empty() const
{
return m_vertices.empty();
}
template <typename T>
size_t Graph<T>::numberOfVertices() const
{
return m_vertices.size();
}
template <typename T>
size_t Graph<T>::numberOfEdges() const
{
size_t retval = 0;
std::accumulate(m_vertices.begin(), m_vertices.end(), retval,
[](size_t sum, const Vertex& v)
{ return sum + v.m_edges.size(); });
return retval;
}
template <typename T>
bool Graph<T>::addVertex(const T& data)
{
if (find(data) != m_vertices.end())
return false;
Vertex v(data);
m_vertices.push_back(v);
return true;
}
template <typename T>
bool Graph<T>::removeVertex(const T& data)
{
typename std::vector<Vertex>::iterator it = find(data);
if (it == m_vertices.end())
return false;
m_vertices.erase(it);
return true;
}
template <typename T>
bool Graph<T>::addEdge(const T& source, const T& destination, float weight)
{
typename std::vector<Vertex>::iterator source_it = find(source);
if (source_it == m_vertices.end())
return false;
typename std::vector<Vertex>::iterator destination_it = find(destination);
if (destination_it == m_vertices.end())
return false;
(*source_it).addEdge(destination, weight);
return true;
}
template <typename T>
bool Graph<T>::removeEdge(const T& source, const T& destination, float weight)
{
typename std::vector<Vertex>::iterator it = find(source);
if (it == m_vertices.end())
return false;
(*it).removeEdge(destination, weight);
return true;
}
template <typename T>
bool Graph<T>::removeAllEdges(const T& source, const T& destination)
{
typename std::vector<Vertex>::iterator it = find(source);
if (it == m_vertices.end())
return false;
(*it).removeAllEdgesEdge(destination);
return true;
}
template <typename T>
bool Graph<T>::contains(const T& data) const
{
return find(data) != m_vertices.end();
}
template <typename T>
std::vector<T> Graph<T>::vertices() const
{
std::vector<T> retval;
std::for_each(m_vertices.begin(), m_vertices.end(),
[&retval](const Vertex& v)
{ retval.push_back(v.m_data); });
return retval;
}
template <typename T>
std::vector<T> Graph<T>::neighboursOf(const T& data) const
{
typename std::vector<T> retval;
typename std::vector<Vertex >::const_iterator vertex_it = find(data);
if (vertex_it == m_vertices.end())
return retval;
std::for_each((*vertex_it).m_edges.begin(), (*vertex_it).m_edges.end(),
[&retval](const Edge& e)
{ retval.push_back(e.m_weight); });
return retval;
}
template <typename T>
std::vector<int> Graph<T>::edgesBetween(const T& source, const T& destination) const
{
std::vector<int> retval;
typename std::vector<Vertex>::const_iterator vertex_it = find(source);
if (vertex_it == m_vertices.end())
return retval;
std::for_each((*vertex_it).m_edges.begin(), (*vertex_it).m_edges.end(),
[&retval, &destination](const Edge& e)
{ if (e.m_destination == &destination) retval.push_back(e.m_weight); });
return retval;
}
template <typename T>
std::string Graph<T>::serialize() const
{
/// @todo implement me
return std::string("");
}
template <typename T>
typename std::vector<typename Graph<T>::Vertex >::const_iterator Graph<T>::find(const T& data) const
{
return std::find_if(m_vertices.begin(), m_vertices.end(),
[&data](const Vertex& v)
{ return v.m_data == &data; });
}
template <typename T>
typename std::vector<typename Graph<T>::Vertex >::iterator Graph<T>::find(const T& data)
{
return std::find_if(m_vertices.begin(), m_vertices.end(),
[&data](const Vertex& v)
{ return v.m_data == &data; });
}
/*
template <typename T>
typename std::vector<T> subtee_breathFirst(const Graph<T>& graph, const T& root)
{
std::vector<T> retval;
std::vector<T> q;
q.push_back(root);
while (!q.empty()) {
T node = q.front();
q.pop_front();
retval.push_back(node);
const std::vector<T> neighbours = graph.neighbours(node);
typename std::vector<T>::const_iterator it;
for (it = neighbours.begin(); it != neighbours.end(); ++it)
q.push_back(*it);
}
return retval;
}
template <typename T>
bool connected(const Graph<T>& graph)
{
std::vector<T> connected;
const std::vector<T> vertices = graph.vertices();
typename std::vector<T>::const_iterator it;
for (it = vertices.begin(); it != vertices.end(); ++it) {
const std::vector<T> neighbours = graph.neighbours(*it);
typename std::vector<T>::const_iterator it2;
for (it2 = neighbours.begin(); it2 != neighbours.end(); ++it2)
connected.push_back(*it2);
}
typename std::vector<T>::const_iterator last = std::unique(connected.begin(), connected.end());
return graph.size == std::distance(connected.begin(), last);
}
template <typename T>
bool circular(const Graph<T>& graph)
{
/// @todo implemente me
return true;
}
template <typename T>
typename std::vector<T> path(const Graph<T>& graph, const T& a, const T& b)
{
// Dijkstra's algorithm for single-source shortest path
/// @todo implemente me
return 0;
}
*/
#endif // GRAPH_H