|
|
|
@ -1,27 +1,22 @@
|
|
|
|
|
#include <graph.hpp>
|
|
|
|
|
#ifndef GRAPH_ALGORITHMS_HPP
|
|
|
|
|
#define GRAPH_ALGORITHMS_HPP
|
|
|
|
|
|
|
|
|
|
#include "graph.hpp"
|
|
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
|
#include <unordered_map>
|
|
|
|
|
#include <unordered_set>
|
|
|
|
|
#include <queue>
|
|
|
|
|
|
|
|
|
|
#include <utility>
|
|
|
|
|
#include <algorithm>
|
|
|
|
|
#include <functional>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
|
|
template <typename G>
|
|
|
|
|
inline typename G::weight_type min_dist_between(const G& graph,
|
|
|
|
|
typename G::const_reference destination,
|
|
|
|
|
typename G::const_reference source)
|
|
|
|
|
{
|
|
|
|
|
const std::vector<typename G::weight_type>& ws = graph.weights(destination, source);
|
|
|
|
|
const typename std::vector<typename G::weight_type>::const_iterator it = std::min_element(ws.begin(), ws.end());
|
|
|
|
|
return *it;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename V, typename W>
|
|
|
|
|
inline V smallest_distance_to_graph(const std::unordered_set<V>& q, const std::unordered_map<V, W>& dist)
|
|
|
|
|
inline V closestNode(const std::unordered_set<V>& q, const std::unordered_map<V, W>& dist)
|
|
|
|
|
{
|
|
|
|
|
const typename std::unordered_set<V>::const_iterator smallest_it =
|
|
|
|
|
std::min_element(q.begin(), q.end(),
|
|
|
|
@ -31,14 +26,17 @@ inline V smallest_distance_to_graph(const std::unordered_set<V>& q, const std::u
|
|
|
|
|
return *smallest_it;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename V, typename W>
|
|
|
|
|
template <typename V>
|
|
|
|
|
std::vector<V> pathFromPrevList(const V& dest, std::unordered_map<V, V> prev)
|
|
|
|
|
{
|
|
|
|
|
std::vector<V> retval;
|
|
|
|
|
|
|
|
|
|
retval.push_back(dest);
|
|
|
|
|
for (V it = dest; prev.find(it) != prev.end() ; it = prev.at(it))
|
|
|
|
|
retval.push_back(prev[it]);
|
|
|
|
|
for (V it = dest; prev.find(it) != prev.end() ; /*it = prev.at(it)*/) {
|
|
|
|
|
V v = prev.at(it);
|
|
|
|
|
retval.push_back(v);
|
|
|
|
|
it = v;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::reverse(retval.begin(), retval.end());
|
|
|
|
|
return retval;
|
|
|
|
@ -47,93 +45,18 @@ std::vector<V> pathFromPrevList(const V& dest, std::unordered_map<V, V> prev)
|
|
|
|
|
} // anonym namespace
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// template <typename G>
|
|
|
|
|
// std::pair <std::unordered_map<typename G::value_type, typename G::weight_type>,
|
|
|
|
|
// std::unordered_map<typename G::value_type, typename G::value_type> >
|
|
|
|
|
// dijkstra_shortest_path(const G& graph, typename G::const_reference source)
|
|
|
|
|
// {
|
|
|
|
|
// typedef typename G::value_type V;
|
|
|
|
|
// typedef typename G::weight_type W;
|
|
|
|
|
//
|
|
|
|
|
// std::unordered_map<V, W> dist; /// @todo -> std::map < W, V > ?
|
|
|
|
|
// std::unordered_map<V, V> prev;
|
|
|
|
|
//
|
|
|
|
|
// dist[source] = V();
|
|
|
|
|
//
|
|
|
|
|
// std::unordered_set<V> q;
|
|
|
|
|
// for (const V& v : graph.vertices())
|
|
|
|
|
// q.insert(v);
|
|
|
|
|
//
|
|
|
|
|
// while (!q.empty()) {
|
|
|
|
|
// const V& u = smallest_distance_to_graph<V, W>(q, dist);
|
|
|
|
|
// q.erase(u);
|
|
|
|
|
// if (dist.find(u) == dist.end())
|
|
|
|
|
// continue;
|
|
|
|
|
//
|
|
|
|
|
// for (V v : graph.neighboursOf(u)) {
|
|
|
|
|
// const W alt = dist.at(u) + min_dist_between(graph, u, v);
|
|
|
|
|
// if (dist.find(v) == dist.end() || alt < dist.at(v)) {
|
|
|
|
|
// dist[v] = alt;
|
|
|
|
|
// prev[v] = u;
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// return std::make_pair(dist, prev);
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// template <typename G>
|
|
|
|
|
// std::pair <std::unordered_map<typename G::value_type, typename G::weight_type>,
|
|
|
|
|
// std::unordered_map<typename G::value_type, typename G::value_type> >
|
|
|
|
|
// dijkstra_shortest_path_v2(const G& graph, typename G::const_reference source)
|
|
|
|
|
// {
|
|
|
|
|
// typedef typename G::value_type V;
|
|
|
|
|
// typedef typename G::weight_type W;
|
|
|
|
|
//
|
|
|
|
|
// std::unordered_map<V, W> dist;
|
|
|
|
|
// std::unordered_map<V, V> prev;
|
|
|
|
|
//
|
|
|
|
|
// dist[source] = V();
|
|
|
|
|
//
|
|
|
|
|
// std::unordered_set<V> q;
|
|
|
|
|
// q.insert(source);
|
|
|
|
|
//
|
|
|
|
|
// const std::vector<V>& s_n = graph.neighboursOf(source);
|
|
|
|
|
// std::copy(s_n.begin(), s_n.end(), std::inserter(q, q.end()));
|
|
|
|
|
//
|
|
|
|
|
// while (!q.empty()) {
|
|
|
|
|
// const V& u = smallest_distance_to_graph<V, W>(q, dist);
|
|
|
|
|
// q.erase(u);
|
|
|
|
|
//
|
|
|
|
|
// for (V v : graph.neighboursOf(u)) {
|
|
|
|
|
// const W alt = dist.at(u) + min_dist_between(graph, u, v);
|
|
|
|
|
// if (dist.find(v) == dist.end() || alt < dist.at(v)) {
|
|
|
|
|
// dist[v] = alt;
|
|
|
|
|
// prev[v] = u;
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// if (dist.find(v) == dist.end())
|
|
|
|
|
// q.insert(v);
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// return std::make_pair(dist, prev);
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
template <typename G>
|
|
|
|
|
std::vector<typename G::value_type>
|
|
|
|
|
dijkstra_shortest_path_to(const G& graph,
|
|
|
|
|
typename G::const_reference source,
|
|
|
|
|
typename G::const_reference dest)
|
|
|
|
|
template <typename V, typename W>
|
|
|
|
|
std::vector<V>
|
|
|
|
|
dijkstra_shortest_path_to(const Graph<V>& graph,
|
|
|
|
|
const V& source,
|
|
|
|
|
const V& dest,
|
|
|
|
|
std::function<W(V, V)> distanceCompute
|
|
|
|
|
)
|
|
|
|
|
{
|
|
|
|
|
typedef typename G::value_type V;
|
|
|
|
|
typedef typename G::weight_type W;
|
|
|
|
|
|
|
|
|
|
std::unordered_map<V, W> dist; /// @todo into std::priority_queue<std::pair<V< W>>
|
|
|
|
|
std::unordered_map<V, V> prev;
|
|
|
|
|
|
|
|
|
|
dist[source] = V();
|
|
|
|
|
dist.emplace(source, W());
|
|
|
|
|
|
|
|
|
|
std::unordered_set<V> q;
|
|
|
|
|
q.insert(source);
|
|
|
|
@ -142,22 +65,30 @@ dijkstra_shortest_path_to(const G& graph,
|
|
|
|
|
std::copy(s_n.begin(), s_n.end(), std::inserter(q, q.end()));
|
|
|
|
|
|
|
|
|
|
while (!q.empty()) {
|
|
|
|
|
const V& u = smallest_distance_to_graph<V, W>(q, dist);
|
|
|
|
|
const V& u = closestNode<V, W>(q, dist);
|
|
|
|
|
q.erase(u);
|
|
|
|
|
if (u == dest)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
for (V v : graph.neighboursOf(u)) {
|
|
|
|
|
const W alt = dist.at(u) + min_dist_between(graph, u, v);
|
|
|
|
|
if (dist.find(v) == dist.end() || alt < dist.at(v)) {
|
|
|
|
|
dist[v] = alt;
|
|
|
|
|
prev[v] = u;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (dist.find(v) == dist.end())
|
|
|
|
|
const bool newNode = dist.find(v) == dist.end();
|
|
|
|
|
const W d = distanceCompute(u, v);
|
|
|
|
|
if (newNode) {
|
|
|
|
|
dist.emplace(v, d);
|
|
|
|
|
prev.emplace(v, u);
|
|
|
|
|
q.insert(v);
|
|
|
|
|
} else {
|
|
|
|
|
const W alt = dist.at(u) + d;
|
|
|
|
|
const bool betterRoute = alt < dist.at(v);
|
|
|
|
|
if (betterRoute) {
|
|
|
|
|
dist[v] = alt;
|
|
|
|
|
prev[v] = u;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return pathFromPrevList(dest, prev);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // GRAPH_ALGORITHMS_HPP
|
|
|
|
|